The 15th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon

Low-Energy Precision Physics at MESA

Achim Denig
Institute for Nuclear Physics
Johannes Gutenberg University Mainz
The Mainz Microtron MAMI

Electron Accelerator for Fixed Target Experiments

E_{max} (e-) = 1.6 GeV
I_{max} ~ 100 µA (CW)

- Resolution $\sigma_E < 0.100$ MeV
- Polarization 85%
- Reliability: 7000 hours / year
The Mainz Microtron MAMI

Electron Accelerator for Fixed Target Experiments

\[E_{\text{max}} (e^-) = 1.6 \text{ GeV} \]
\[I_{\text{max}} \sim 100 \mu\text{A (CW)} \]
- Resolution \(\sigma_E < 0.100 \text{ MeV} \)
- Polarization 85%
- Reliability: 7000 hours / year

A1 electron scattering facility
A2 tagged photon beam facility
Mainz Energy-Recovering Superconducting Accelerator

Recirculating ERL

$E_{\text{max}} = 105/155$ MeV

$I_{\text{max}} > 1$ mA (ERL)

Commissioning 2022
Mainz Energy-Recovering Superconducting Accelerator

Recirculating ERL

\[E_{\text{max}} = 105/155 \text{ MeV} \]

\[I_{\text{max}} > 1 \text{ mA (ERL)} \]

Commissioning 2022

Mode 1: Extracted Beam
P2 Experiment

Mark Pitt, Wednesday
Mainz Energy-Recovering Superconducting Accelerator

Recirculating ERL

$E_{\text{max}} = 105/155$ MeV

$I_{\text{max}} > 1$ mA (ERL)

Commissioning 2022

Mode 1: Extracted Beam

P2 Experiment

Mark Pitt, Wednesday

Extracted beam
BDX Experiment

new building
Mainz Energy-Recovering Superconducting Accelerator

Recirculating ERL

\[E_{\text{max}} = 105/155 \text{ MeV} \]

\[I_{\text{max}} > 1 \text{ mA (ERL)} \]

Commissioning 2022

Mode 1: Extracted Beam
P2 Experiment

Mode 2: ERL Internal Target

Mark Pitt, Wednesday

Extracted beam
BDX Experiment

new building
MESA Physics Programme

<table>
<thead>
<tr>
<th></th>
<th>ERL Mode MAGIX expt.</th>
<th>Extracted Beam Mode P2 expt.</th>
<th>Extracted Beam Mode BDX expt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nucleon From Factors</td>
<td>✔</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EW Mixing Angle</td>
<td></td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>Nuclear Astrophysics</td>
<td>✔ 12C (α,γ) 16O</td>
<td>neutron skin of nuclei</td>
<td></td>
</tr>
<tr>
<td>Few Body Physics</td>
<td>✔</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Light Dark Matter Search</td>
<td>✔</td>
<td></td>
<td>✔</td>
</tr>
</tbody>
</table>
Internal Gas Target Experiment MAGIX in MESA ERL Mode
Operation of a high-intensity (polarized) ERL beam in conjunction with light internal target
→ a novel technique in nuclear and particle physics
→ measurement of low momenta tracks with high accuracy
→ competitive luminosities
MAinz Gas Internal EXperiment

Magnetic spectrometer
MAinz Gas Internal EXperiment

Magnetic spectrometer

TPC-based focal plane detector

- 10^{-4} momentum resolution
- Requires spatial resolution of 50 µm
- Open field cage
- GEM readout
MAnz Gas Internal EXperiment

Magnetic spectrometer

Cryogenic gas jet target

TPC-based focal plane detector
- 10^{-4} momentum resolution
- Requires spatial resolution of 50 µm
- Open field cage
- GEM readout
Supersonic Gas-Jet-Target

- Windowless!
- Supersonic gas jet
- Higher gas density (10^{19}/cm2)
- Cryogenic
- H$_2$, 3He, 4He, O$_2$, …., Xe
- $O(10^{35}$ cm$^{-2}$ s$^{-1}$) @ 10^{19}/cm2
Supersonic Gas-Jet-Target

Commissioned in 2017/18 at A1/MAMI
Electromagnetic Form Factors at MAGIX
The Proton Radius Puzzle

Atomic Spectroscopy
(PSI: Lamb Shift in muonic hydrogen)

\[R_E = 0.8409 \pm 0.0004 \text{ fm} \]

Nature (2012)
Science (2013)

Electron Scattering on proton
(EM form factor measurements)

\[R_E = 0.879 \pm 0.008 \text{ fm} \]

PRL (2010)
PRD (2014)

Jan Bernauer, Wednesday
Proton Radius Puzzle - What is going on?

A worldwide effort in atomic physics, hadron/particle physics and theory

• New Physics explanation?
 Lepton – Non-Universality!
Different coupling of electron-proton vs. muon-proton
 → light or heavy new particles (Dark Photon)?

• Electron scattering expts.
 not at sufficiently low Q^2
 or – radiative corrections not understood
 or – normalization errors
 or ?

$$\left\langle r_{E/M}^2 \right\rangle = -\frac{6\hbar^2}{G_{E/M}(0)} \frac{dG_{E/M}(Q^2)}{dQ^2} \bigg|_{Q^2=0}$$
The Quest for Low-Q^2 Scattering Data

- MAMI ISR (Proposal 2017)
- Data until 1980
- Bernauer (MAMI 2010)
- Belushkin (Dispersion Analysis 2007)
The Quest for Low-Q^2 Scattering Data

- MAGIX at MESA $E_0 = 20$ MeV
- MAGIX at MESA $E_0 = 45$ MeV
- MAGIX at MESA $E_0 = 105$ MeV
- MAMI ISR (Proposal 2017)
- Data until 1980
- Bernauer (MAMI 2010)
- Belushkin (Dispersion Analysis 2007)

Eugene Pasyuk, Monday
Magnetic Form Factor @ MAGIX

\[\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega} \right)_{Mott} \frac{1}{\varepsilon (1 + \tau)} \left[\varepsilon G_E^2 (Q^2) + \tau G_M^2 (Q^2) \right] \]

\[\tau = \frac{Q^2}{4m_p^2} \]

\[\varepsilon = \left(1 + 2 (1 + \tau) \tan^2 \frac{\theta_e}{2} \right)^{-1} \]

Low Q² accessible with low E_{beam}

Suppressed at low Q² due to \(\tau \)

→ Double polarization measurement

Beam Target Asymmetry!

Beam Spin

Target Spin

\[\phi^* = 0 \]
\[\theta^* = 0, \pi/2 \]

⇒ \(A_\perp \sim \frac{G_E}{G_M} \)
Magnetic Form Factor @ MAGIX

\[\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega} \right)_{\text{Mott}} \frac{1}{\varepsilon(1 + \tau)} \left[\varepsilon G_E^2(Q^2) + \tau G_M^2(Q^2) \right] \]

\[\tau = \frac{Q^2}{4m_p^2} \]

\[\varepsilon = \left(1 + 2(1 + \tau) \tan^2 \frac{\theta_e}{2} \right)^{-1} \]

Low \(Q^2 \) accessible with low \(E_{\text{beam}} \)

Suppressed at low \(Q^2 \) due to \(\tau \)

→ Double polarization measurement

Beam Target Asymmetry!

\[\phi^* = 0 \]
\[\theta^* = 0, \pi \]

\[\Rightarrow A_\perp \sim \frac{G_E}{G_M} \]
Proton Radius Puzzle - What is going on?

A worldwide effort in atomic physics, hadron/particle physics and theory

• Unknown QED / hadronic correction in μH data?

![Diagram showing various corrections and uncertainties in the measurement of the proton radius.](chart.png)

- 1-loop eVP
- proton size
- 2-loop eVP
- μSE and μVP
- discrepancy
- 1-loop eVP in 2 Coul.
- recoil
- 2-photon exchange
- hadronic VP
- proton SE
- 3-loop eVP
- light-by-light

largest hadronic correction/uncertainty: $\Delta E_{2\nu} = (33 \pm 2) \mu$eV
Polarisability Corrections in Light Nuclei Systems

\[\mu_H: \Delta E^{TPE}_{2P - 2S} = (33 \pm 2) \mu eV \]
dispersive analysis

Carlson, Vanderdhaeghen (2011)
accuracy comparable with present experimental precision
\rightarrow Related to proton polarizability

Edoardo Monarcchi, Monday
Polarisability Corrections in Light Nuclei Systems

\(\mu^H: \Delta E^{\text{TPE}} (2P - 2S) = (33 \pm 2) \mu\text{eV} \)

Carlson, Vanderdhaeghen (2011)

accuracy comparable with present experimental precision

\(\rightarrow \) Related to proton polarizability

\(\mu^D: \Delta E^{\text{TPE}} = (1727 \pm 20) \mu\text{eV} \)

nucleon potentials form chiral EFT

Hernandez et al. (2014)

accuracy factor 5 worse than present experimental precision

\(\mu^3\text{He}^+: \Delta E^{\text{TPE}} = (15.46 \pm 0.39) \text{meV} \)

nucleon potentials form chiral EFT

Nevo Dinur, Ji, Bacca, Barnea (2016)

\((15.14 \pm 0.49) \text{meV} \) dispersive analysis

Carlson, Gorchtein, Vanderhaeghen (2016)
Polarisability Corrections in Light Nuclei Systems

\[\mu_{H}: \ \Delta E^{TPE}_{(2P - 2S)} = (33 \pm 2) \mu eV \]
dispersive analysis

Carlson, Vanderdhaeghen (2011)

accuracy comparable with present experimental precision

→ Related to proton polarizability

\[\mu_{D}: \ \Delta E^{TPE} = (1727 \pm 20) \mu eV \]

Hernandez et al. (2014)

accuracy factor 5 worse than present experimental precision

\[\mu_{3\text{He}}: \ \Delta E^{TPE} = (15.46 \pm 0.39) \text{ meV} \]
nucleon potentials form chiral EFT

Nevo Dinur, Ji, Bacca, Barnea (2016)

(15.14 \pm 0.49) \text{ meV} dispersive analysis

Carlson, Gorchtein, Vanderhaeghen(2016)

Lots of opportunities at MAMI/MESA for measurements of proton polarizabilities and in the field of few-body physics
Light
Dark Sector
Searches
Dark Sector Searches

- keV MeV GeV TeV DM Mass

LDM

Dark Photon - Messanger
New massive force carrier of extra $U(1)_d$ gauge group

- Could explain large number of astrophysical anomalies
Arkani-Hamed et al. (2009)
Andreas, Ringwald (2010);

- Could explain deviation of 3.7σ between $(g-2)_{\mu}$ SM prediction and direct $(g-2)_{\mu}$ measurement
Pospelov (2008)
Dark Sector Searches

keV MeV GeV TeV DM Mass

DM Mass

WIMPs

WIMP mass vs. WIMP-nucleon cross section.
Dark Photon

Model 1: \(m_{\gamma'} \ll m_{DM} \)

Dark Photon decaying into SM particles – coupling \(\epsilon \)

Holdom [1986]
Dark Photon

Model 1: \(m_{\gamma'} \ll m_{\text{DM}} \)

Dark Photon decaying into SM particles – coupling \(\epsilon \)

Holdom [1986]
Dark Photon

Model 1: \(m_{\gamma'} \ll m_{DM} \)

Dark Photon decaying into SM particles – coupling \(\epsilon \)

```latex
\begin{align*}
\text{Model 1: } & m_{\gamma'} \ll m_{DM} \\
\text{Dark Photon decaying into SM particles – coupling } & \epsilon 
\end{align*}
```

Model 2: \(m_{\gamma'} > 2m_{DM} \)

Dark Photon decaying into Dark Matter

\(\rightarrow \) invisible decay experiments

\(\rightarrow \) LDM detection

```latex
\begin{align*}
\text{Model 2: } & m_{\gamma'} > 2m_{DM} \\
\text{Dark Photon decaying into Dark Matter } & \rightarrow \text{invisible decay experiments} \\
& \rightarrow \text{LDM detection}
\end{align*}
```

Holdom [1986]
Results from A1 / MAMI

Model 1: \(m_{\gamma'} \ll m_{\text{DM}} \)

Low-Energy Electron Accelerators with high Intensity ideally suited for Dark Photon search (Bjorken et al.)

Signal process

Hypothetical Dark Photon signal: bump in one single bin

QED bkg.
Results from A1

- \(E_{\text{beam}} \) 180 - 855 MeV
- 100 \(\mu \)A beam current
- Stack of Ta targets
- 22 kinematic settings
- \(O(1 \text{ month}) \) of beam time

\(\rightarrow \) at time of publication most stringent limit ruling out major part of the parameter range motivated by \((g-2)_\mu\)
Features:

- Xe gas target
- Luminosity 10^{35} cm$^{-2}$s$^{-1}$
- 6 month of data taking
Model 2: \(m_{\gamma'} > 2m_{DM} \)
Model 2: \(m_{\gamma'} > 2m_{DM} \)

Species from Collimated pair of Dark Matter particles!
Simulation BDX @ MESA

Full GEANT4 simulation:
P2 target, beam dump, BDX detector volume, walls etc.

→ LDM interaction with BDX material (electron recoil)

\[E_{\text{beam}} = 140 \text{ MeV} \]
\[\chi \text{ elastic scattering kinematics} \]

Achim Denig
Detector Concept for BDX @ MESA

Ideal Requirements:
1. Electron Detection > few MeV
2. Large Surface (Acceptance)
3. Large thickness (Int. Prob.)
4. Reliability (long running time)
5. Background rejection
 - Cosmics
 - Natural Backgrounds
 - Beam Backgrounds (Neutrons)

Baseline Concept
Inorganic crystal calorimeter
- Cherenkov (fast, no neutrons)
- Scintillator (higher light yield)
Detector Concept for BDX @ MESA

Ideal Requirements:
1. Electron Detection > few MeV
2. Large Surface (Acceptance)
3. Large thickness (Int. Prob.)
4. Reliability (long running time)
5. Background rejection
 - Cosmics
 - Natural Backgrounds
 - Beam Backgrounds (Neutrons)

Baseline Concept
Inorganic crystal calorimeter
- Cherenkov (fast, no neutrons)
- Scintillator (higher light yield)
Beam Dump Experiment (BDX) @ MESA

Detector layouts:
- **Phase A**
 - PbF$_2$
- **Phase B**
 - Lead glass
 - 0.13 m3
- **Phase C**
 - Lead glass
 - ~ 10 m3
Conclusions

- **New MESA electron accelerator** (increase in intensity x 10) under construction at Mainz, commissioning in 2022

- **The low-energy frontier:**
 - Proton Radius
 - EW Mixing Angle
 - Dark Sector
 - Nuclear Astrophysics
 - Few Body Physics
 -

- **Projection for MESA based on experiences achieved at MAMI**

- Go beyond state of the art in many **technological aspects:** ultralight detectors, beam polarization, low energy detection, ...

- **Competitive programme in nuclear, hadron, and particle physics**
Conclusions

- **New MESA electron accelerator** (increase in intensity x 10) under construction at Mainz, commissioning in 2022

- The low-energy frontier:
 - Proton Radius
 - Dark Sector
 - EW Mixing Angle

- Projection for MESA based on experiences achieved at MAMI

- Go beyond state of the art in many **technological aspects**:
 - Ultralight detectors, beam polarization, low energy detection, ...

- Competitive programme in nuclear, hadron, and particle physics