Spectroscopy from the lattice:
the scalar glueball and $K\pi$ scattering

Ruairí Brett
Carnegie Mellon University

June 6, 2019

MENU 2019
Motivation

- significant experimental efforts to map out QCD spectrum: Hall B/D (JLab), COMPASS (CERN), etc.

- few states (QCD)-stable: $\pi, K, N, \Lambda, \Sigma, \Xi, \Omega$
 - most are unstable resonances

- theoretical description of states important, many poorly understood
 - eg. tetraquarks ($qq\bar{q}\bar{q}$), glueballs (bound gluons), …

- study low-lying hadronic spectrum using lattice QCD:
 - QCD stationary states in finite-vol.
 - Lüscher: $2 \rightarrow 2$ scattering amplitudes from finite-vol. energies
QCD on the Lattice

- strong coupling, α_s, large at low energies
 → non-perturbative

\[\alpha_s(M_z) = 0.1181 \pm 0.0011\]

\[pp \rightarrow \text{jets} \quad \text{e.w. precision fits (N}^3\text{LO)}\]

\[Q \quad \text{[GeV]} \quad 1 \quad 10 \quad 100\]

\[\tau \text{ decays (N}^3\text{LO)}\]

\[\text{DIS jets (NLO)}\]

\[\text{Heavy Quarkonia (NLO)}\]

\[e^+e^- \text{ jets & shapes (res. NNLO)}\]

\[\text{e.w. precision fits (N}^3\text{LO)}\]

\[pp \rightarrow \tau \text{ decays (N}^3\text{LO)}\]

\[pp \rightarrow \tau \text{ decays (N}^3\text{LO)}\]

\[\text{Particle Data Group}\]
QCD on the Lattice

- strong coupling, α_s, large at low energies
 \rightarrow non-perturbative

- Lattice QCD: define theory on finite, Euclidean, space-time lattice
 - lattice spacing \rightarrow regulator

- observables:
 $$\langle A \rangle = \frac{1}{Z} \int \mathcal{D}[\bar{\psi}, \psi, U] A e^{-S[\bar{\psi}, \psi, U]}$$

- evaluate numerically via Monte Carlo
 \Rightarrow control over (many) systematic errors, etc.
Rotational Symmetry

- periodic B.C. in cubic box:
 \[J^{PC} \] no longer good quantum numbers

- label stationary states using irreps of cubic symmetry group \(O_h \)
 - parity (\(u/g \)) and G-parity (\(+/-\)) where relevant

- continuum spin ID:

<table>
<thead>
<tr>
<th>(J)</th>
<th>(A_1)</th>
<th>(A_2)</th>
<th>(E)</th>
<th>(T_1)</th>
<th>(T_2)</th>
<th>(J)</th>
<th>(G_1)</th>
<th>(G_2)</th>
<th>(H)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(\frac{1}{2})</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>(\frac{3}{2})</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>(\frac{5}{2})</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>(\frac{7}{2})</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>(\frac{9}{2})</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>
Extracting the Finite-Volume Spectrum

- temporal correlation matrix:

\[C_{\alpha\beta}(t) \equiv \langle 0|O_{\alpha}(t + t_0)O_{\beta}(t_0)|0 \rangle \]

\[= \sum_n \langle 0|O_{\alpha}|n\rangle \langle n|O_{\beta}|0 \rangle e^{-E_nt} \]

- eigenvalues tend to lowest \(N \) energies

\[\lim_{t \to \infty} \lambda_n(t) = b_n e^{-E_nt}[1 + O(e^{\Delta_n t})] \]

\[\Rightarrow E_{\text{eff}}^n(t) = \frac{1}{\Delta t} \ln \left(\frac{\lambda_n(t)}{\lambda_n(t + \Delta t)} \right) \]
Extracting the Finite-Volume Spectrum

- temporal correlation matrix:

\[
C_{\alpha\beta}(t) \equiv \langle 0 | \mathcal{O}_\alpha(t + t_0) \overline{\mathcal{O}}_\beta(t_0) | 0 \rangle = \sum_n \langle 0 | \mathcal{O}_\alpha | n \rangle \langle n | \overline{\mathcal{O}}_\beta | 0 \rangle e^{-E_n t}
\]

- eigenvalues tend to lowest \(N \) energies

\[
\lim_{t \to \infty} \lambda_n(t) = b_n e^{-E_n t} [1 + \mathcal{O}(e^{\Delta_n t})]
\]

\[
\Rightarrow E_{\text{eff}}(t) = \frac{1}{\Delta t} \ln \left(\frac{\lambda_n(t)}{\lambda_n(t + \Delta t)} \right)
\]

quality of signal.excited state contamination \textit{highly} dependant on operator basis
Extracting the Finite-Volume Spectrum

- temporal correlation matrix:

\[C_{\alpha\beta}(t) \equiv \langle 0|O_{\alpha}(t + t_0)\overline{O}_{\beta}(t_0)|0\rangle = \sum_n \langle 0|O_{\alpha}|n\rangle\langle n|\overline{O}_{\beta}|0\rangle e^{-E_n t} \]

- eigenvalues tend to lowest \(N \) energies

\[\lim_{t \to \infty} \lambda_n(t) = b_n e^{-E_n t}[1 + \mathcal{O}(e^{\Delta_n t})] \]

\[\Rightarrow E_{\text{eff}}(t) = \frac{1}{\Delta t} \ln \left(\frac{\lambda_n(t)}{\lambda_n(t + \Delta t)} \right) \]

quality of signal/excited state contamination *highly* dependant on operator basis

careful operator design is crucial
Extracting the Finite-Volume Spectrum

- 2-pt. correlation matrix:

\[C_{\alpha\beta}(t) = \sum_n \langle 0 | O_\alpha | n \rangle \langle n | \overline{O}_\beta | 0 \rangle e^{-E_n t} \]

\[= \sum_n Z^{(n)}_\alpha Z^{(n)*}_\beta e^{-E_n t} \]

- level ID inferred from \(Z \) overlaps with \textit{probe} operators:

\[|\Phi_j\rangle \equiv O_j |0\rangle \Rightarrow Z^{(n)}_j = \langle \Phi_j | n \rangle \]

multiple operators can mix/overlap on any given eigenstate
Extracting the Finite-Volume Spectrum

- 2-pt. correlation matrix:

$$C_{\alpha\beta}(t) = \sum_n \langle 0 | \mathcal{O}_\alpha | n \rangle \langle n | \overline{\mathcal{O}}_\beta | 0 \rangle e^{-E_n t}$$

$$= \sum_n Z^{(n)}_\alpha Z^{(n)\ast}_\beta e^{-E_n t}$$

- level ID inferred from Z overlaps with probe operators:

$$|\Phi_j\rangle \equiv \mathcal{O}_j |0\rangle \Rightarrow Z^{(n)}_j = \langle \Phi_j | n \rangle$$

multiple operators can mix/overlap on any given eigenstate
Extracting the Finite-Volume Spectrum

- 2-pt. correlation matrix:

\[C_{\alpha\beta}(t) = \sum_n \langle 0 | \mathcal{O}_\alpha | n \rangle \langle n | \mathcal{O}_\beta | 0 \rangle e^{-E_n t} \]

\[= \sum_n Z_{\alpha}^{(n)} Z_{\beta}^{(n)*} e^{-E_n t} \]

- level ID inferred from \(Z \) overlaps with probe operators:

\[|\Phi_j\rangle \equiv \mathcal{O}_j | 0 \rangle \Rightarrow Z_j^{(n)} = \langle \Phi_j | n \rangle \]

multiple operators can mix/overlap on any given eigenstate

overlaps give **qualitative** measure of mixing between states
The Scalar Glueball

- glueball: hypothetical bound state of gluons

- experimental evidence elusive, light scalar candidates:
 - \(f_0(1370), f_0(1500), f_0(1710) \)

- lattice studies to date:
 - light scalar \(\sim 1700 \text{ MeV} \)
 - most in pure \(SU(3)/\text{quenched} \) approx. (no quark/meson mixing)
The Scalar Glueball

- glueball: hypothetical bound state of gluons

- experimental evidence elusive, light scalar candidates:
 - $f_0(1370), f_0(1500), f_0(1710)$

- lattice studies to date:
 - light scalar ~ 1700 MeV
 - most in pure $SU(3)$/quenched approx. (no quark/meson mixing)

- here: extract low-lying A_{1g}^+ spectrum with $q\bar{q}$, meson-meson, & glueball operators
 - first look (from the lattice) at mixing between glueball, $q\bar{q}$, and two-hadron states

PRD 73, 014516 (2006)
A$_{1g}^+$ Spectrum

$24^3 \times 128$ anisotropic lattice, $m_\pi \sim 390$ MeV, $m_K \sim 550$ MeV:

![Graphs showing energy levels and significances with and without glueball operators.]

- $m_\pi \sim 390$ MeV
- Hatched boxes: significant overlap with multiple operators
- $m_{\text{ref}} = 1.82 m_K \sim 1$ GeV
Scattering process: eg.

\[I = 1 \quad \pi\pi \rightarrow \pi\pi \]

\[\infty \text{-volume} \]

\[2m_\pi \]

bound states

meson-meson continuum

\[E \]
Scattering process: eg.
\[I = 1 \quad \pi\pi \rightarrow \pi\pi \]

\[\infty \text{-volume} \]

\[\begin{array}{c}
\text{bound states} \\
\text{meson-meson continuum}
\end{array} \]

\[2m_\pi \]

\[E \]

\[\text{finite volume} \]

\[2m_\pi \]

\[E \]

no continuum of scattering states \(\rightarrow \) how to access \(\infty \)-vol. physics?

\[p = \frac{2\pi}{L} d \]
Lüscher Quantisation \((2 \rightarrow 2)\)

Infinite volume physics from LQCD

Lüscher: Relationship between finite volume spectrum and infinite volume scattering matrix

- Quantisation condition:

\[
\det[\tilde{K}^{-1} - B] = 0
\]

- For each \(E_{\text{cm}}\) in spectrum, determinant gives single relation to entire scattering matrix

 ⇒ Exactly solvable for single channel, single partial wave

 ⇒ \(\ell\) mixing/coupled decay channels requires parameterisation of \(\tilde{K}\) and a fit

Lüscher Quantisation ($2 \rightarrow 2$)

Infinite volume physics from LQCD

Lüscher: Relationship between finite volume spectrum and infinite volume scattering matrix

- **Quantisation condition:**

\[
\tilde{K}_\ell^{-1} = \left(\frac{q_{cm}}{m_\pi}\right)^{2\ell+1} \cot \delta_\ell \text{ det}[\tilde{K}^{-1} - B] = 0
\]

- For each E_{cm} in spectrum, determinant gives single relation to entire scattering matrix

 ⇒ Exactly solvable for single channel, single partial wave
 ⇒ ℓ mixing/coupled decay channels requires parameterisation of \tilde{K} and a fit

Lüscher Quantisation \((2 \rightarrow 2)\)

Infinite volume physics from LQCD

Lüscher: Relationship between finite volume spectrum and infinite volume scattering matrix

- Quantisation condition:

\[
\tilde{K}^{-1}_\ell = \left(\frac{q_{cm}}{m_\pi} \right)^{2\ell+1} \cot \delta_\ell \quad \text{det}[\tilde{K}^{-1} - \mathcal{B}] = 0
\]

\text{box matrix: known function of } (E_{cm}, L)

- For each \(E_{cm}\) in spectrum, determinant gives single relation to entire scattering matrix

\[\Rightarrow\] Exactly solvable for single channel, single partial wave

\[\Rightarrow\] \(\ell\) mixing/coupled decay channels requires parameterisation of \(\tilde{K}\) and a fit

Elastic $K\pi$ Scattering

- $32^3 \times 256$ anisotropic lattice,
 $m_\pi \approx 230$ MeV
- include $\ell = 0, 1, 2$ partial waves
- fit forms

$$
\left(\tilde{K}^{-1} \right)_{00}^{\text{ERE}} = \frac{-1}{m_\pi a_0} + \frac{m_\pi r_0}{2} \frac{q_{\text{cm}}^2}{m_\pi^2}
$$

$$
\left(\tilde{K}^{-1} \right)_{11}^{\text{BW}} = \frac{6\pi E_{\text{cm}}}{g^2 m_\pi} \left(\frac{m_{K^*}^2}{m_\pi^2} - \frac{E_{\text{cm}}^2}{m_\pi^2} \right)
$$

$$
\left(\tilde{K}^{-1} \right)_{22}^{\text{ERE}} = \frac{-1}{m_\pi^5 a_2}
$$

- p-wave : $K^*(892)$
- s-wave : $K_0^*(700)/\kappa$

<table>
<thead>
<tr>
<th>d</th>
<th>Λ</th>
<th>ℓ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(0,0,0)$</td>
<td>A_{1g}</td>
<td>0, 4, ...</td>
</tr>
<tr>
<td></td>
<td>T_{1u}</td>
<td>1, 3, ...</td>
</tr>
<tr>
<td>$(0,0,n)$</td>
<td>A_1</td>
<td>0, 1, 2, ...</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>1, 2, 3, ...</td>
</tr>
<tr>
<td>$(0,n,n)$</td>
<td>A_1</td>
<td>0, 1, 2, ...</td>
</tr>
<tr>
<td></td>
<td>B_1</td>
<td>1, 2, 3, ...</td>
</tr>
<tr>
<td></td>
<td>B_2</td>
<td>1, 2, 3, ...</td>
</tr>
<tr>
<td>(n,n,n)</td>
<td>A_1</td>
<td>0, 1, 2, ...</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>1, 2, 3, ...</td>
</tr>
</tbody>
</table>

$K\pi$ Scattering Phase-Shifts

- plots of p-wave and s-wave phase shift ($\tilde{E} = (E_{cm} - m_K)/m_\pi$)
- d-wave contributes negligibly
Decay of $K^*(892)$

- comparison with (some) lattice calculations of $K^*(892)$ resonance parameters
- phenomenological values shown with asterisks
Conclusions/Future work - Scattering

- goal: calculate scattering phase-shifts/resonance parameters from LQCD

- meson-meson scattering at a mature stage
 - see B. Hörz’s talk today
 - physical point calculations feasible - large volumes required

 - see J. Bulava’s plenary this morning
 - baryon-baryon at light quark masses on the horizon

- extension of formalism to include three-body channels underway
 - see M. Mai’s talk on Mon.
- goal: *qualitative* description of resonance spectrum

- high computational cost for large operator bases/volumes
 - careful operator design crucial

- $\bar{q}q$ states straightforward but many interesting states not well described
 \Rightarrow hybrids
 \Rightarrow molecular states
 \Rightarrow ...

- influence of tetraquark operators: κ and $a_0(980)$
 - see D. Darvish’s talk on Tues.
Meson configurations

- q's = smeared, displaced quark fields

\[
\Phi^{AB}_{\alpha\beta;ij}(p, t) = \sum_x e^{ip \cdot (x + \frac{1}{2}(d_\alpha + d_\beta))} \delta_{ab} q^{B}_{b\beta j}(x, t) q^{A}_{a\alpha i}(x, t)
\]

\[
\Phi^{ABC}_{\alpha\beta\gamma;ijk}(p, t) = \sum_x e^{ip \cdot x} \varepsilon_{abc} q^{C}_{c\gamma k}(x, t) q^{B}_{b\beta j}(x, t) q^{A}_{a\alpha i}(x, t)
\]

- group-theory projections onto irreps of lattice symmetry group

\[
\Phi_{l}(t) = c^{(l)*}_{\alpha\beta} \Phi^{AB}_{\alpha\beta}(t) \quad \Phi^{l}_{l}(t) = c^{(l)*}_{\alpha\beta\gamma} \Phi^{ABC}_{\alpha\beta\gamma}(t)
\]
More exotic operators

- tetraquarks: $3 \times \overline{3} \times \overline{3} \times \overline{3} = 1 + 1 + 8 + 8 + \ldots$

$$\Phi_{\alpha\beta\mu\nu;ijkl}^{ABC\bar{D}}(p, t) = \sum_x e^{ip \cdot x} (\delta_{ab}\delta_{cd} \pm \delta_{ad}\delta_{bc})$$

$$\times \bar{q}_d^{D}(x, t) \ q_c^{C}(x, t) \ \bar{q}_b^{B}(x, t) \ q_a^{A}(x, t)$$

→ preprint coming soon: κ & $a_0(980)$ resonances
More exotic operators

- tetraquarks: \(3 \times 3 \times \bar{3} \times \bar{3} = 1 + 1 + 8 + 8 + \ldots \)

\[
\Phi^{ABC\pm}_{\alpha\beta\mu\nu;ijkl}(p, t) = \sum_x e^{ip \cdot x} (\delta_{ab}\delta_{cd} \pm \delta_{ad}\delta_{bc})
\times \bar{q}^D_{d\nu l}(x, t) q^C_{c\mu k}(x, t) \bar{q}^B_{b\beta j}(x, t) q^A_{a\alpha i}(x, t)
\]

→ preprint coming soon: \(\kappa \) & \(a_0(980) \) resonances
More exotic operators

- tetraquarks: \[3 \times 3 \times \bar{3} \times \bar{3} = 1 + 1 + 8 + 8 + \ldots \]

\[
\Phi_{ABCD}^{\pm\alpha\beta\mu\nu;ijkl}(p, t) = \sum_x e^{ip \cdot x} (\delta_{ab}\delta_{cd} \pm \delta_{ad}\delta_{bc}) \\
\times \overline{q}^D_{d\nu l}(x, t) q^C_{c\mu k}(x, t) \overline{q}^B_{b\beta j}(x, t) q^A_{a\alpha i}(x, t)
\]

→ preprint coming soon: \(\kappa \) & \(a_0(980) \) resonances

- scalar glueball: (purely gluonic - no quark fields)

\[G_\Delta \sim \text{Tr} \, \tilde{\Delta}, \quad \tilde{\Delta} \equiv \text{covariant laplacian} \]

→ see PRD 88, 014511 (2013)
\(S\)-wave \(K\pi \) amplitude: \(K_0^*(700)/\kappa \)

\[
\frac{m_{K^*}}{m_\pi} = 3.808(18), \quad g = 5.33(20), \quad m_\pi a_0 = -0.353(25), \\
m_\pi^5 a_2 = -0.0013(68), \quad \chi^2/\text{dof} = 1.42
\]

- based on LO ERE, \(m_\pi a_0 < 0 \) suggests virtual bound state

- however, NLO parameters give \(1 - 2r_0/a_0 = -8.9(2.4) \) which must be \(> 0 \) for a (real or virtual) bound state

- zeros of \(q_{\text{cm}} \cot \delta_0 - iq_{\text{cm}}: m_R/m_\pi = 4.66(13) - 0.87(18)i \)
 - consistent with BW fit

- better energy resolution & careful analytic continuation required

[\text{Nucl.Phys. B932 (2018)}]