Quark, gluon and hadron physics within a novel renormalization-group procedure for the QCD Hamiltonian

María Gómez-Rocha

UNIVERSIDAD DE GRANADA

MENU 2019, Pittsburg PA, USA
1. Introduction
 The method of calculation

2. Effective particles in QCD
 Effective quarks and gluons

3. Effective interactions in hadronic reactions
 The scattering problem
Motivation

What are natural scales in a problem?
Motivation

What are natural scales in a problem?

Fundamental theories

Degrees of freedom are given and they are infinite

\[H_{\text{QCD}} |\psi\rangle = E |\psi\rangle \]

\[H_{\text{QCD}} = H_q + H_{\bar{q}} + H_g + H_{Qqg} + H_{q\bar{q}} + \ldots \]

\[|\psi\rangle = |0\rangle + |q\rangle + |\bar{q}\rangle + |g\rangle + |qg\rangle + |q\bar{q}\rangle + \ldots \]

Local interactions produce divergences \(\int_{\infty} \)

Effective theories

\[\rightarrow \text{Tool: Głazek-Wilson Similarity Renormalization Group (SRG):} \]

\[H_\lambda = U_\lambda H_0 U_\lambda^\dagger, \quad U_\lambda |\psi_0\rangle = |\psi_\lambda\rangle, \quad H_\lambda |\psi_\lambda\rangle = H_0 |\psi_0\rangle \]

Then, truncation of the Fock space makes sense for low energies

Cutoff \(\int^\Lambda \rightarrow \frac{\partial [\text{Observables}]}{\partial \Lambda} = 0, \quad \Lambda \sim \Lambda_{\text{natural}}. \)
Effective-particle approach

Renormalization group procedure for effective particles (RGPEP)

★ Derive the canonical Hamiltonian of the theory:
Lagrangian \rightarrow Hamiltonian \rightarrow bound state problem
$\mathcal{L}_{QCD} \rightarrow \mathcal{H}_{QCD} \rightarrow H_{QCD}|\Psi\rangle = E|\Psi\rangle$

★ Construct the effective Hamiltonian:

$$H_{\infty}(q_{\infty}) = H_{\lambda}(q_{\lambda}), \quad H_{\lambda} = U_{\lambda} H_0 U_{\lambda}^\dagger$$

★ Hadrons in the Fock space

$$|\Psi_{s\text{ meson}}\rangle = |Q\lambda \bar{Q}_{\lambda}\rangle + |Q\lambda \bar{Q}_{\lambda} G_{\lambda}\rangle + |Q\lambda \bar{Q}_{\lambda} G_{\lambda} G_{\lambda}\rangle + ...$$

Hadrons as bound states of QCD...
... from asymptotic freedom to bound states

K.G. Wilson et al PRD49 (1994) 6720
The method of calculation

Start from the Lagrangian density $\mathcal{L}_{QCD} = \bar{\psi}(i\slashed{D} - m)\psi - \frac{1}{2} \text{tr} F^{\mu\nu} F_{\mu\nu}$

1. **Canonical Hamiltonian** Use front-form dynamics:

 - $\mathcal{L}_{QCD} \rightarrow T_{QCD}^{\mu\nu} \rightarrow H_{QCD} = \int_{x^+ = 0} \mathcal{H}_{QCD}(x) dx, \quad A^+ = 0$
 - $k^+ = k^0 + k^3, \quad k^- = k^0 - k^3, \quad \vec{k}^\perp = (k^1, k^2)$
 - $x_i = k^+_i / P^+ \quad \kappa^\perp_{ij} = x_j k^\perp_i - x_i k^\perp_j$
The method of calculation

Start from the Lagrangian density $\mathcal{L}_{QCD} = \bar{\psi}(i\not{D} - m)\psi - \frac{1}{2}\text{tr} F^{\mu\nu} F_{\mu\nu}$

1. **Canonical Hamiltonian** Use front-form dynamics:

 - $\mathcal{L}_{QCD} \rightarrow T_{QCD}^{\mu\nu} \rightarrow H_{QCD} = \int_{x^+ = 0} \mathcal{H}_{QCD}(x) dx, \quad A^+ = 0$
 - $k^+ = k^0 + k^3, \quad k^- = k^0 - k^3, \quad \vec{k}^\perp = (k^1, k^2)$
 - $x_i = k^+_i / P^+ \quad \kappa^\perp_{ij} = x_j k^+_i - x_i k^+_j$

2. **Regularization** Introduce regulating functions at vertices

 - UV and small-x cutoff $\int dx d^2 \kappa^\perp \rightarrow \int dx d^2 \kappa^\perp r_\delta(x) r_\Delta(\kappa^\perp)$
 - $\lim_{\delta \rightarrow 0} r_\delta(x) = 1, \quad \lim_{\Delta \rightarrow \infty} r_\Delta(\kappa^\perp) = 1$
The method of calculation

Start from the Lagrangian density $\mathcal{L}_{QCD} = \bar{\psi} (i \not{D} - m) \psi - \frac{1}{2} \text{tr} F_{\mu \nu} F^{\mu \nu}$

1. **Canonical Hamiltonian** Use front-form dynamics:

 - $\mathcal{L}_{QCD} \rightarrow T_{QCD}^{\mu \nu} \rightarrow H_{QCD} = \int_{x^+ = 0} \mathcal{H}_{QCD}(x) dx$, $A^+ = 0$

 $k^+ = k^0 + k^3$, $k^- = k^0 - k^3$, $\vec{k}^\perp = (k^1, k^2)$;

 $x_i = k_i^+/P^+$, $\kappa_{ij}^\perp = x_j k_i^\perp - x_i k_j^\perp$

2. **Regularization** Introduce regulating functions at vertices

 - UV and small-x cutoff $\int dxd^2 \kappa^\perp \rightarrow \int dxd^2 \kappa^\perp r_\delta(x) r_\Delta(\kappa^\perp)$

 $\lim_{\delta \rightarrow 0} r_\delta(x) = 1$, $\lim_{\Delta \rightarrow \infty} r_\Delta(\kappa^\perp) = 1$

3. **Renormalization**

 $q^\dagger |0\rangle = |q\rangle \rightarrow \ q^\dagger_\lambda |0\rangle = |q_\lambda\rangle \quad q^\dagger_\lambda = U_\lambda q^\dagger U^\dagger_\lambda$

 Effective particles of type λ introduced by RGPEP

 $$ \frac{d}{d\lambda^{-4}} H_\lambda = [G_\lambda, H_\lambda] \ , \quad G_\lambda = [H_f, H_{P\lambda}]$$
Effective quanta

Hamiltonian can be re-written in terms of effective quanta

\[H_0(q_0) = H_s(q_s) \]

\[q_0^\dagger|0\rangle = |q_0\rangle \quad \rightarrow \quad q_s^\dagger|0\rangle = |q_s\rangle \quad q_s = U_s q_0 U_s^\dagger \]

\(s = size \)
\(\lambda = 1/s \) momentum scale

RGPEP equation

\[H_t' = [G_t, H_t] , \quad G_t = [H_{free}, \tilde{H}_t] , \quad t = 1/\lambda^4 \]

Initial condition

\[H_{\lambda=\infty}(= H_{s=0}) = H_{\text{canonical}}^{\text{QCD}} + CT_{\Delta \delta} \]

Counterterms \(CT^{\Delta \delta} \) remove UV-cutoff \(\Delta \) dependence.
Solve the RGPEP equation perturbatively

\[H_\lambda(q_\lambda) = H(q) \]

\[H'_\lambda = [[H_f, H_{P\lambda}], H_\lambda] \quad q_\lambda = U_\lambda q U_\lambda^\dagger \]

perturbatively, order by order

\[H_\lambda = H_f + gH_{1,\lambda} + g^2H_{2,\lambda} + g^3H_{3,\lambda} + g^4H_{4,\lambda} + ... \]

\[H'_f = 0 , \]
\[gH'_{\lambda 1} = [[H_f, gH_{1\lambda}], H_f] , \]
\[g^2H'_{\lambda 2} = [[H_f, g^2H_{2\lambda}], H_f] + [[H_f, gH_{1\lambda}], gH_{1\lambda}] , \]
\[g^3H'_{\lambda 3} = [[H_f, g^3H_{3\lambda}], H_f] + [[H_f, g^2H_{2\lambda}], gH_{1\lambda}] + [[H_f, gH_{1\lambda}], g^2H_{2\lambda}] , \]

\[\rightarrow \text{Integration produces functions with } \text{form factors} \]

\[e^{-\left(M_a^2 - M_b^2 \right)^2 / \lambda^4} \]
The idea of effective particles

Effective particles of type λ can change their relative motion kinetic energy through a single effective interaction by no more than about λ

$$s_c \sim 1/\Lambda_{QCD}$$

$$f_\lambda = e^{-\left(M_1^2 - M_2^2\right)^2 / \lambda^4} = e^{-\left(M_1^2 - M_2^2\right)^2 s^4}$$

$$s \ll s_c \quad s < s_c \quad s \sim s_c$$
Examples of terms in $H_{\lambda QCD} = H_f + g H_{1,\lambda} + g^2 H_{2,\lambda} + g^3 H_{3,\lambda} + g^4 H_{4,\lambda} + \ldots$

0-th order terms

1-st order terms

2nd-order terms

3rd-order terms

4th-order terms

...
Example of 3rd-order calculation

Three-gluon vertex and running coupling g_s in SU(3) Yang-Mills theory

[MGR, Głazek, PRD 92 (2015) 065005]
→ The three-gluon vertex:
Starting from the light-front H_{QCD}, solve RGPEP perturbatively up to 3rd order

$$Y_\lambda = gH_{1\lambda} + g^3H_{3\lambda}$$

$$= \sum_{123} \int [123] \tilde{Y}_\lambda(\kappa_{12}^+, \sigma) a^\dagger_{1,\lambda} a^\dagger_{2,\lambda} a_{3,\lambda} + H.c.$$
Heavy quarkonium and triply heavy baryons

[Głazek, MGR, More, Serafin, PLB 773 (2017)]
[Serafin, MGR, More, Głazek, EPJ C78 (2018)]
The front-form (FF) eigenvalue equation

\[H_\lambda |\Psi_\lambda\rangle = \frac{M^2 + P^{-2}}{P^+} |\Psi_\lambda\rangle \quad \Rightarrow \quad (H_\lambda P^+ - P^{-2}) |\Psi_\lambda\rangle = M^2 |\Psi_\lambda\rangle \]

Remark:

* Eigenvalue is \(M^2 \) in FF instead of \(H |\Psi\rangle = M |\Psi\rangle \) in instant form (IF);

* At large distances: \(U_{\text{eff, FF}} \approx V_{\text{eff, IF}}^2 \)
 Linear potential in IF \(\Rightarrow \) quadratic potential in FF

\[V_{IF}(r) \sim \sigma r \quad \Rightarrow \quad V_{FF}(r) \sim \sigma^2 r^2 \]

[Trawiński et al. PRD90 (2014) 074017]
Heavy quarkonium

Construct heavy-flavor effective theory

\[
\begin{pmatrix}
H_f + g^2 H_2 & g H_1 \\
 g H_1 & H_f + g^2 H_2
\end{pmatrix}
\begin{pmatrix}
|Q\bar{Q}G\rangle \\
|Q\bar{Q}\rangle
\end{pmatrix}
= 0,
\]

\[
\downarrow \text{RGPEP (2nd order)}
\]

\[
\begin{pmatrix}
H_f + \mu^2 & g H_{1\lambda} \\
g H_{1\lambda} & H_f + g^2 H_{2\lambda}
\end{pmatrix}
\begin{pmatrix}
|Q\lambda \bar{Q}_\lambda G_\lambda\rangle \\
|Q\lambda \bar{Q}_\lambda\rangle
\end{pmatrix}
= 0.
\]

[G\lazek, MGR, More, Serafin, PLB 773 (2017)]

- Effective potential including gluon degrees of freedom explicitly
- Energy of a single quark is infinity
- Gluon-mass ansatz yields a finite eigenvalue in $Q\bar{Q}$ and $QQQQ$
- Effective quark-antiquark potential: Coulomb + Harmonic oscillator
Heavy baryons

Analogously, for baryons

\[
\begin{bmatrix}
\Lambda_{QCD} & \lambda & m_0 \\
\end{bmatrix} \xrightarrow{\Delta \to \infty} \begin{bmatrix}
\mathcal{K} \bar{\kappa}
\end{bmatrix}
\]

\[
\begin{bmatrix}
H_0 + g^2 H_2 & gH_1 \\
gH_1 & H_0 + g^2 H_2
\end{bmatrix} - E \begin{bmatrix}
|3Q\rangle \\
|3\rangle
\end{bmatrix} = 0,
\]

\[\downarrow \text{RGPEP (2nd order)}\]

\[
\begin{bmatrix}
H_{\lambda 0} + \mu_\lambda^2 & gH_{\lambda 1} \\
gH_{\lambda 1} & H_{\lambda 0} + g^2 H_{\lambda 2}
\end{bmatrix} - E \begin{bmatrix}
|3Q_\lambda G_\lambda\rangle \\
|3Q_\lambda\rangle
\end{bmatrix} = 0.
\]

[Serafin, MGR, More, Głazek, EPJ C78 (2018)]

- Effective potential including gluon degrees of freedom explicitly
- Energy of a single quark is infinity
- Gluon-mass ansatz yields a finite eigenvalue in $Q\bar{Q}$ and $QQQQ$
- Effective quark-antiquark potential: Coulomb + Harmonic oscillator
Some results

[Serafin, MGR, More, Głażek, EPJ C78 (2018)]

Black: PDG masses, \hspace{1cm} \textbf{Blue}: Our calculation

\textbf{Green}: average of many different approaches [MGR, Hilger, Krassnigg, PRD 93 (2016)].
Summary of Part I

- Asymptotic freedom at large λ
- Energy of a single quark $|Q\rangle$ is infinity
- $Q\bar{Q}$ and QQQ bound states:
 - finite eigenvalue thanks to gluon-mass ansatz
 - harmonic oscillator correction to Coulomb potential
 - in order to include the running of the coupling, 4th-order terms are needed
- Gluon degrees of freedom included explicitly

Outlook

$|\Psi_{\text{hybrid}}\rangle = |Q\lambda\bar{Q}\lambda\rangle + |Q\lambda\bar{Q}\lambdaG\lambda\rangle + ...$

→ Replace the ansatz μ^2 by the true theory: Do g^4 terms lead to the same oscillator potential?
Summary of Part I

★ Asymptotic freedom at large λ
★ Energy of a single quark $|Q\rangle$ is infinity
★ $Q\bar{Q}$ and $QQ\bar{Q}$ bound states:
 - finite eigenvalue thanks to gluon-mass ansatz
 - harmonic oscillator correction to Coulomb potential
 - in order to include the running of the coupling, 4th-order terms are needed
★ Gluon degrees of freedom included explicitly

Outlook

→ Hybrids $|\Psi_{\text{hybrid}}\rangle = |Q_\lambda \bar{Q}_\lambda G_\lambda\rangle + |Q_\lambda \bar{Q}_\lambda G_\lambda G_\lambda\rangle + \ldots$
→ Replace the ansatz μ^2 by the true theory:
 Do g^4 terms lead to the same oscillator potential?
The scattering problem and the SRG

In collaboration with E. Ruiz Arriola
Phase shifts δ_{II}
data analysis taken from:
[García-Martín, Kamiński, Peláez,
Ruiz de Elvira, Ynduráin, PRD83(2011)]
Kadyshevsky equation

- It is a 3D-reduction of the BSE
- It enables a relativistic Hamiltonian interpretation for the scattering problem
- Amenable for numerical analysis
- Useful in view of its application to the three-body interaction (i.e. omega decays into 3 pions..., and so on)

\[
t(\vec{p}', \vec{p}, \sqrt{s}) = v(\vec{p}', \vec{p}) + \int \frac{d^3 q}{(2\pi)^3} \frac{v(\vec{p}', \vec{q})}{4E_q^2} \frac{t(\vec{q}, \vec{p}, \sqrt{s})}{\sqrt{s} - 2E_q + i\varepsilon}
\]

Phaseshifts:

\[
\tan \delta_l(p) = -\frac{\pi}{8} p r_l(p, p, \sqrt{s})
\]

\[
r_l(p', p, \sqrt{s}) = v_l(p', p) + \int_0^\infty dq \frac{q^2}{4E_q^2} v_l(p', q) \frac{1}{\sqrt{s} - 2E_q} r_l(q, p, \sqrt{s})
\]
Kadyshevsky equation

Its corresponding Hamiltonian in the center-of-mass system:

\[H\Psi_{l}(p) \equiv 2E_{p}\Psi(p) + \int dq \frac{q^{2}}{4E_{q}^{2}}\nu_{l}(p,q)\Psi_{l}(q) \]

The homogeneus Kadyshevsky equation reads

\[H\Psi_{l}(p) = \sqrt{s}\Psi_{l}(p) \]

Energy shift prescription:

For a given momentum grid, e.g.

\[\int_{0}^{\Lambda} dp f(p) \rightarrow \sum_{n=1}^{N} w_{n} f(p_{n}) \]

\[p_{n} = \frac{\Lambda_{\text{num}}}{2} [1-\cos(\pi/N(n-1/2))] \]

\[w_{n} = \frac{\Lambda_{\text{num}}}{2} \sin(\pi/N(n-1/2)) \]

Phase shifts can be obtained as

\[\delta_{n} = -\pi \frac{P_{n} - p_{n}}{w_{n}}, \quad \text{where} \quad \sqrt{s_{n}} = 2E_{n} = 2\sqrt{P_{n}^{2} + m^{2}_{\pi}} \]
Phase shifts δ_{II}

Orange: energy shift calculation
Blue: Fit, standard prescription
Red: Experiment

S_0 wave

P_0 wave

S_2 wave
Phase shifts

- In order to fit $\pi\pi$ phase shifts up to energies $\sqrt{s} \lesssim 1\text{GeV}$, a very high-energy momentum tail up to $\sqrt{s} \lesssim 10\text{GeV}$ needs to be considered.

Model potential taken from [Mathelitsch and Garzilazo PRC 32 (1985)] for S_0, P_1 and S_2, respectively.

- Disparity in energy scales: annoying
- Details of the interaction at short distances are so relevant??
- Is it possible to construct an effective theory and focus in a short energy range?
Similarity renormalization group

SRG employs a transformation that changes the cutoff to isolate Hamiltonians that produce cutoff-independent eigenvalues.

SRG allows to select the relevant energy scale

The transformation

\[H_\lambda = U_\lambda H_0 U_\lambda^\dagger \]

does not change the spectrum

\[H|\psi\rangle = H_\lambda |\psi_\lambda\rangle = E|\psi\rangle \]

Different generators \(G_\lambda \) can be chosen, so that \(H_\lambda \) becomes

- Diagonal
- Block-diagonal
The Crank-Nicolson method

Consider the Kadyshevsky equation

\[H \Psi_t(p) = \sqrt{s} \Psi_t(p) \]

SRG evolution obeys

\[H'_t = [G_t, H_t] \]

The effective Hamiltonian is related to the initial one by a unitary transformation:

\[H_t = U_t H_0 U_t^\dagger \]

The unitary transformation must be such that

\[\frac{dU_t}{dt} = G_t U_t \equiv -i \mathcal{H} U_t \]

One can apply the Crank-Nicolson algorithm,

\[U_{n+1} = \left(1 - i \frac{dt}{2} \mathcal{H}_n \right) \left(1 + i \frac{dt}{2} \mathcal{H}_n \right)^{-1} U_n \]

with \(-i \mathcal{H} = G_t\).
Effective Hamiltonian matrix

$S0$-wave: Evolution of the Hamiltonian matrix for
$\lambda = \infty$, $\lambda = 0.27$ fm$^{-1}$, $\lambda = 0.18$ fm$^{-1}$, and $\lambda = 0.12$ fm$^{-1}$

Wilson diagonal generator:

⇒ there is hope for finding an effective potential “contained” in the small matrix.
Summary:

- Similarity transformation allows to construct an effective Hamiltonian matrix
- Block-diagonal matrix \rightarrow effective potential \rightarrow possible to eliminate long-momentum tails

\Rightarrow SRG is a useful tool not only in nuclear physics: hadronic reactions and QCD.

OUTLOOK:

\rightarrow 3π resonant states (e.g. $\omega \rightarrow 3\pi$, A_1, etc).

\rightarrow Interactions between other hadrons: hadron molecules
Acknowledgment

Thank you for your attention!

This work is part of a larger project

IMTREPHS

Implicit transverse renormalization in effective partonic hadron structure

Marie Sklodowska-Curie grant agreement No 754446
UGR Research and Knowledge Transfer Found– Athenea3i